Sample Questions for GAAT for PGDM (BDA)

Question 1:

Find the missing figure, which follows the same pattern / rule and mark it as answer.

Options	Answer
# # A A A # # #	
# # # # #	
#	
# # A A A # # #	
# A A A A A A	
# # # # # #	

Column 3 contains the number of outer elements as the sum of the number of outer elements in column 1 and 2; whereas inner elements as difference of the number of inner elements in column 1 and 2

Question 2:

If
$$\begin{bmatrix} x & 1 & -5 \\ 1 & -1 & 2 \\ 2+x & 3 & 4 \end{bmatrix}$$
 is singular matrix, then x is:

Options	Answer
13/25	
-13/25	
-25/13	✓
25/13	

Singular matrix is a matrix whose determinant is zero; D=0

$$\mathsf{D} = \mathsf{x}((-1)(4) - (3)(2)) - \mathsf{1}((1)(4) - (2)(2 + \mathsf{x})) + (-5)((1)(3) - (-1)(2 + \mathsf{x}))$$

$$D = -10x + 2x - 25 - 5x$$

$$D = -13x - 25$$

$$D = 0 ----->>> -13x - 25 = 0$$

$$-13x = 25$$

$$x = -25/13$$

Question 3:

If
$$A = \begin{bmatrix} 4 & -1 \\ -1 & x \end{bmatrix}$$
 and $A^2 - 6A - 7I = 0$, then X is:

Options	Answer
-2	
10	
-10	
2	•

$$A = (4)(x) - (-1)(-1) = 4x - 1$$

$$A^2 = (4x - 1)^2 = 16x^2 - 8x + 1$$

$$6A = 6(4x - 1) = 24x - 6$$

I is identity matrix which is equal to 1; so I = 1

71 = 7

$$A^2 - 6A - 7I = 0$$

$$(16x^2 - 8x + 1) - (24x - 6) - (7) = 0$$

$$16x^2 - 32x = 0$$

$$16x(x - 2) = 0$$

$$x = 0 \text{ or } 2$$

according to answer choices answer is 2.

Question 4:

If A is a non singular matrix and B is a square matrix, then $det(A^{-1}BA)$ is equal to:

Options	Answer
det(B)	•
det(A)	
det(A ⁻¹)	
det(B ⁻¹)	

Answer Explanation

$$det(A^{-1}BA) = det(A^{-1}) * det(B) * det(A)$$

$$= det(A^{-1}A) * det(B)$$

= det(I) * det(B), where I is identity matrix whose determinent is 1

Question 5:

If
$$A = \begin{vmatrix} 3 & 7 \\ 1 & 2 \end{vmatrix}$$
, then the value of the determinant $\begin{vmatrix} A^{2012} \end{vmatrix}$ is :

Options	Answer
-1	
1	✓
0	
None of the given options	

$$|A^n| = |A|^n$$
 for $n = Natural numbers$

$$|A| = (3)(2) - (7)(1) = -1$$

$$|A^{2012}| = |A|^{2012} = (-1)^{2012} = 1$$

Question 6:

The product of three consecutive numbers is 74046. What is the sum of these numbers?

Options	Answer
123	
126	✓
129	
132	

Answer Explanation

Let's assume x, (x+1), (x+2) are three consecutive numbers and their product is 74046.

so;
$$(x) * (x+1) * (x+2) = 74046$$

$$x^3 + 3x^2 + 2x - 74046 = 0$$

on factoring the equation

$$(x - 41)(x^2 + 44x + 1806) = 0$$

means either (x - 41) = 0 -----> x=41

or
$$(x^2 + 44x + 1806) = 0$$
 -----> $x = -22 + \sqrt{(-5288)}$ and $-22 - \sqrt{(-5288)}$

so x = 41 as the other values are complex numbers.

Now the sum of the numbers would be:

$$41 + 42 + 43 = 126$$

Question 7:

Solve the equations for x and y: $\sqrt{x} + \sqrt{y} = 10$ and $\sqrt{x} - 2\sqrt{y} = 1$

Options	Answer
7, 3	
9, 16	
8, 15	
49, 9	✓

Answer Explanation

first equation - second equations

$$(\sqrt{x} + \sqrt{y} = 10) - (\sqrt{x} - 2\sqrt{y} = 1)$$

$$3 \sqrt{y} = 9$$

 \sqrt{y} = 3 -----> putting this in equation first ----> \sqrt{x} = 7

$$y = 9, x = 49$$

Question 8:

Options	Answer
65	•
35	
40	
55	

Lets assum there are x 10 cents coin and y 5 cents coins now

total number of coins are 100 means : x + y = 100 ----> (1)

total money is \$8.25 = 825 cents means : 10x + 5y = 825 ----> (2)

10 * equation (1) - equation (2)

5y = 175

y = 35, put this in equation (1) x = 65

number of 10 cents coins = x = 65

Question 9:

Slope of any line is not defined if the line is:

Options	Answer
Parallel to x-axis	
parallel to y-axis	✓
parallel to x-y = 0	
parallel to x+y =0	

slop of any line = $(Y_2 - Y_1) / (X_2 - X_1)$

so the slop of any line will not be defined if all the points have the same \boldsymbol{x} - coordinates.

Out of the given options only line which is **parallel to the y - axis** have the same x - coordinates for all the points.